ModelKit

ModelKit is the symbolic input and modeling language of HomotopyContinuation.jl. It is designed such that you can easily create an efficient formulation of your problem.

Expressions and Variables

HomotopyContinuation.ModelKit.VariableType
Variable(name::Union{String,Symbol}, indices...) <: Number

A data structure representing a variable.

julia> Variable(:a)
a

julia> Variable(:x, 1)
x₁

julia> Variable(:x, 10, 5)
x₁₀₋₅

Equality and ordering

Variables are identified by their name and indices. That is, two variables are equal if and only if they have the same name and indices.

julia> Variable(:a) == Variable(:a)
true

julia> Variable(:a, 1) == Variable(:a, 2)
false

Similarly, variables are first ordered lexicographically by their name and then by their indices.

julia> Variable(:a, 1) < Variable(:a, 2)
true

julia> Variable(:a, 1) < Variable(:b, 1)
true

julia> a = [Variable(:a, i, j) for i in 1:2, j in 1:2]
2×2 Array{Variable,2}:
 a₁₋₁  a₁₋₂
 a₂₋₁  a₂₋₂

julia> sort(vec(a))
4-element Array{Variable,1}:
 a₁₋₁
 a₂₋₁
 a₁₋₂
 a₂₋₂
source
HomotopyContinuation.ModelKit.@varMacro
@var variable1 variable2 ...

Declare variables with the given names and automatically create the variable bindings. The macro supports indexing notation to create Arrays of variables.

Examples

julia> @var a b x[1:2] y[1:2,1:3]
(a, b, Variable[x₁, x₂], Variable[y₁₋₁ y₁₋₂ y₁₋₃; y₂₋₁ y₂₋₂ y₂₋₃])

julia> a
a

julia> b
b

julia> x
2-element Array{Variable,1}:
 x₁
 x₂

julia> y
2×3 Array{Variable,2}:
 y₁₋₁  y₁₋₂  y₁₋₃
 y₂₋₁  y₂₋₂  y₂₋₃
source
HomotopyContinuation.ModelKit.@unique_varMacro
@unique_var variable1 variable2

This is similar to @var with the only difference that the macro automatically changes the names of the variables to ensure uniqueness. However, the binding is still to the declared name. This is useful to ensure that there are no name collisions.

Examples

julia> @unique_var a b
(a#591, b#592)

julia> a
a#591

julia> b
b#592
source
MultivariatePolynomials.variablesMethod
variables(prefix::Union{Symbol,String}, indices...)

Create an Array of variables with the given prefix and indices. The expression @var x[1:3, 1:2] is equivalent to x = variables(:x, 1:3, 1:2).

source

Methods

MultivariatePolynomials.coefficientsMethod
coefficients(f::Expression, vars::AbstractVector{Variable}; expanded = false)

Return all coefficients of the given polynomial f for the given variables vars. If expanded = true then this assumes that the expression f is already expanded, e.g., with expand.

source
HomotopyContinuation.ModelKit.coeffs_as_dense_polyFunction
coeffs_as_dense_poly(f, vars, d; homogeneous = false)

Given a polynomial f this returns a vector c of coefficients such that subs(dense_poly(vars, d; homogeneous = homogeneous), c) == f.

Example

@var x[1:3]
f, c = dense_poly(x, 3, coeff_name = :c)
g = x[1]^3+x[2]^3+x[3]^3-1
gc = coeffs_as_dense_poly(g, x, 3)
subs(f, c => gc) == g
true
source
MultivariatePolynomials.degreeMethod
degree(f::Expression, vars = variables(f); expanded = false)

Compute the degree of the expression f in vars. Unless expanded is true the expression is first expanded.

source
HomotopyContinuation.ModelKit.degreesMethod
degrees(f::AbstractVector{Expression}, vars = variables(f); expanded = false)

Compute the degrees of the expressions f in vars. Unless expanded is true the expressions are first expanded.

source
MultivariatePolynomials.differentiateMethod
differentiate(expr::Expression, var::Variable, k = 1)
differentiate(expr::AbstractVector{Expression}, var::Variable, k = 1)

Compute the k-th derivative of expr with respect to the given variable var.

differentiate(expr::Expression, vars::AbstractVector{Variable})

Compute the partial derivatives of expr with respect to the given variable variables vars. Retuns a Vector containing the partial derivatives.

differentiate(exprs::AbstractVector{Expression}, vars::AbstractVector{Variable})

Compute the partial derivatives of exprs with respect to the given variable variables vars. Returns a Matrix where the each row contains the partial derivatives for a given expression.

source
Base.conjFunction
conj(z)

Compute the complex conjugate of a complex number z.

See also: angle, adjoint.

Examples

julia> conj(1 + 3im)
1 - 3im
source
conj(A::AbstractArray)

Return an array containing the complex conjugate of each entry in array A.

Equivalent to conj.(A), except that when eltype(A) <: Real A is returned without copying, and that when A has zero dimensions, a 0-dimensional array is returned (rather than a scalar).

Examples

julia> conj([1, 2im, 3 + 4im])
3-element Vector{Complex{Int64}}:
 1 + 0im
 0 - 2im
 3 - 4im

julia> conj(fill(2 - im))
0-dimensional Array{Complex{Int64}, 0}:
2 + 1im
source
conj(x::AbstractVariable)

Return the complex conjugate of a given variable if it was declared as a complex variable; else return the variable unchanged.

See also isreal, isconj.

conj(x::AbstractPolynomialLike)

Return the complex conjugate of x by applying conjugation to all coefficients and variables.

conj(x::AbstractVector{<:AbstractMonomial})

Return the complex conjugate of x by applying conjugation to monomials.

conj(::AbstractPolynomial)

Returns the complex conjugate of the polynomial

conj(P::IntegerPartition) returns the Ferrer's conjugate of P. Also available as P'.

Base.conj(expr::Expression)

This command returns back expr. This is intended, because complex conjugation is not algebraic.

Example

julia> @var x y ;
julia> f = x + im*y
julia> conj(f)
x + im*y

Polynomials with conjugated coefficients.

If f is a polynomial, the polynomial obtained from f by conjugating its coefficients can be obtained as in the following example.

julia> @var x y ;
julia> f = x + im*y
julia> vars = variables(f)
julia> e, c = exponents_coefficients(f, vars)
julia> poly_from_exponents_coefficients(e, conj.(c), vars)
x - im*y
source
HomotopyContinuation.ModelKit.dense_polyFunction
dense_poly(vars::AbstractVector{Variable}, d::Integer;
           homogeneous = false,
           coeff_name::Symbol = gensym(:c))

Create a dense polynomial of degree d in the given variables variables where each coefficient is a parameter. Returns a tuple with the first argument being the polynomial and the second the parameters.

julia> @var x y;

julia> f, c = dense_poly([x, y], 2, coeff_name = :q);

julia> f
 q₆ + x*q₄ + x^2*q₁ + y*q₅ + y^2*q₃ + x*y*q₂

julia> c
6-element Array{Variable,1}:
 q₁
 q₂
 q₃
 q₄
 q₅
 q₆
source
HomotopyContinuation.ModelKit.evaluateMethod
evaluate(expr::Expression, subs...)
evaluate(expr::AbstractArray{Expression}, subs...)

Evaluate the given expression.

Example

julia> @var x y;

julia> evaluate(x^2, x => 2)
4

julia> evaluate(x * y, [x,y] => [2, 3])
6

julia> evaluate([x^2, x * y], [x,y] => [2, 3])
2-element Array{Int64,1}:
 4
 6

# You can also use the callable syntax
julia> [x^2, x * y]([x,y] => [2, 3])
2-element Array{Int64,1}:
 4
 6
source
HomotopyContinuation.ModelKit.exponents_coefficientsFunction
exponents_coefficients(f::Expression, vars::AbstractVector{Variable}; expanded = false)

Return a matrix M containing the exponents for all occuring terms (one term per column) and a vector c containing the corresponding coefficients. Expands the given expression f unless expanded = true. Throws a PolynomialError if a rational expression is encountered.

source
Missing docstring.

Missing docstring for poly_from_exponents_coefficients. Check Documenter's build log for details.

HomotopyContinuation.ModelKit.hornerFunction
horner(f::Expression, vars = variables(f))

Rewrite f using a multi-variate horner schema.

Example

julia> @var u v c[1:3]
(u, v, Variable[c₁, c₂, c₃])

julia> f = c[1] + c[2] * v + c[3] * u^2 * v^2 + c[3]u^3 * v
c₁ + v*c₂ + u^2*v^2*c₃ + u^3*v*c₃

julia> horner(f)
c₁ + v*(c₂ + u^3*c₃ + u^2*v*c₃)
source
MultivariatePolynomials.nvariablesMethod
nvariables(expr::Expression; parameters = Variable[])
nvariables(exprs::AbstractVector{Expression}; parameters = Variable[])

Obtain the number of variables used in the given expression not counting the the ones declared in parameters.

source
MultivariatePolynomials.monomialsMethod
monomials(variables::AbstractVector, d::Integer; affine = true)

Create all monomials of a given degree in the given variables.

julia> @var x y
(x, y)

julia> monomials([x,y], 2; affine = false)
3-element Array{Operation,1}:
 x ^ 2
 x * y
 y ^ 2
source
MultivariatePolynomials.subsMethod
subs(expr::Expression, subsitutions::Pair...)
subs(exprs::AbstractVector{<:Expression}, subsitutions::Pair...)

Apply the given substitutions to the given expressions.

Examples

@var x y

julia> subs(x^2, x => y)
y ^ 2

julia> subs(x * y, [x,y] => [x+2,y+2])
(x + 2) * (y + 2)

julia> subs([x + y, x^2], x => y + 2, y => x + 2)
2-element Array{Expression,1}:
 4 + x + y
 (2 + y)^2

# You can also use the callable syntax
julia> (x * y)([x,y] => [x+2,y+2])
 (x + 2) * (y + 2)
source
HomotopyContinuation.ModelKit.rand_polyFunction
rand_poly(T = ComplexF64, vars::AbstractVector{Variable}, d::Integer; homogeneous::Bool = false)

Create a random dense polynomial of degree d in the given variables variables. Each coefficient is sampled independently via randn(T).

julia> @var x y;

julia> rand_poly(Float64, [x, y], 2)
0.788764085756728 - 0.534507647623108*x - 0.778441366874946*y -
 0.128891763280247*x*y + 0.878962738754971*x^2 + 0.550480741774464*y^2
source
HomotopyContinuation.ModelKit.to_dictFunction
to_dict(expr::Expression, vars::AbstractVector{Variable})

Return the coefficients of expr w.r.t. the given variables vars. Assumes that expr is expanded and representing a polynomial. Throws a PolynomialError if a rational expression is encountered.

source
MultivariatePolynomials.variablesMethod
variables(expr::Expression; parameters = Variable[])
variables(exprs::AbstractVector{Expression}; parameters = Variable[])

Obtain all variables used in the given expression up to the ones declared in parameters.

Example

julia> @var x y a;
julia> variables(x^2 + y)
2-element Array{Variable,1}:
 x
 y

julia> variables([x^2 + a, y]; parameters = [a])
2-element Array{Variable,1}:
 x
 y
source

System

HomotopyContinuation.ModelKit.SystemType
System(exprs::AbstractVector{Expression};
            variables = variables(exprssion),
            parameters = Variable[])

Create a system from the given Expressions exprs. The variables determine also the variable ordering. The parameters argument allows to declare certain Variables as parameters.

System(support::AbstractVector{<:AbstractMatrix{<:Integer}},
       coefficients::AbstractVector{<:AbstractVector};
       variables,
       parameters = Variable[])

Create a system from the given support and coefficients.

Examples

julia> @var x y;
julia> F = System([x^2, y^2]; variables = [y, x])
System of length 2
 2 variables: y, x

 x^2
 y^2

# Systems are callable.
# This evaluates F at y=2 and x=3
julia> F([2, 3])
2-element Array{Int64,1}:
 9
 4

It is also possible to declare parameters.

julia> @var x y a b;
julia> F = System([x^2 + a, y^2 + b]; variables = [y, x], parameters = [a, b])
System of length 2
 2 variables: y, x
 2 parameters: a, b

 a + x^2
 b + y^2

julia> F([2, 3], [5, -2])
 2-element Array{Int64,1}:
  14
   2
source
Missing docstring.

Missing docstring for evaluate(F::System, x, p = nothing). Check Documenter's build log for details.

HomotopyContinuation.ModelKit.jacobianMethod
jacobian(F::System)

Computes the symbolic Jacobian of the system F.

Example

@var x y
F = System([x^2 + 3y, (y*x+1)^3])
jacobian(F)
2×2 Array{Expression,2}:
             2*x                3
 3*y*(1 + x*y)^2  3*x*(1 + x*y)^2
source
HomotopyContinuation.ModelKit.jacobianFunction
jacobian(F::System, x, p = nothing)

Evaluates the Jacobian of the system F at (x, p).

Example

@var x y
F = System([x^2 + 3y, (y*x+1)^3])
jacobian(F, [2, 3])
2×2 Array{Int32,2}:
   4    3
 441  294
source
HomotopyContinuation.ModelKit.optimizeMethod
optimize(F::System)

Optimize the evaluation cost of the given system F. This applies a multivariate horner schema to the given expressions. See also horner.

Example

julia> f
System of length 4
 4 variables: z₁, z₂, z₃, z₄

 z₁ + z₂ + z₃ + z₄
 z₂*z₁ + z₂*z₃ + z₃*z₄ + z₄*z₁
 z₂*z₃*z₁ + z₂*z₃*z₄ + z₂*z₄*z₁ + z₃*z₄*z₁
 -1 + z₂*z₃*z₄*z₁

julia> optimize(f)
System of length 4
 4 variables: z₁, z₂, z₃, z₄

 z₁ + z₂ + z₃ + z₄
 (z₂ + z₄)*z₁ + (z₂ + z₄)*z₃
 z₁*(z₃*z₄ + (z₃ + z₄)*z₂) + z₂*z₃*z₄
 -1 + z₂*z₃*z₄*z₁
source

Homotopy

HomotopyContinuation.ModelKit.HomotopyType
Homotopy(exprs, vars, t, parameters = Variable[])

Create a homotopy H(vars,t) from the given Expressions exprs where vars are the given variables and t is the dedicated variable parameterizing the family of systems. The parameters argument allows to declare certain Variables as parameters.

Example

julia> @var x y t;

julia> H = Homotopy([x + t, y + 2t], [y, x], t)
Homotopy in t of length 2
 2 variables: y, x

 t + x
 2*t + y

julia> H([2, 3], 0)
2-element Array{Int64,1}:
 3
 2


julia> H([2, 3], 1)
2-element Array{Int64,1}:
 4
 4

It is also possible to declare additional variables.

julia> @var x y t a b;
julia> H = Homotopy([x^2 + t*a, y^2 + t*b], [x, y], t, [a, b])
Homotopy in t of length 2
 2 variables: x, y
 2 parameters: a, b

 a*t + x^2
 b*t + y^2
julia> H([2, 3], 1, [5, 2])
2-element Array{Int64,1}:
 9
 11
source